
J Comput Virol (2005) 1: 32–43
DOI 10.1007/s11416-005-0005-6

ORIGINAL PAPER

Daniel Reynaud-Plantey

New threats of Java viruses

Received: 17 January 2005 / Accepted: 18 May 2005 / Published online: 17 September 2005
© Springer-Verlag 2005

Abstract Only two Java viruses are known and have been
published as a proof-of-concept: StrangeBrew and BeanHive.
Since then the Java programming language has matured and
greatly evolved to include a large number of new, sophisti-
cated functionalities. At the same time, no serious study has
been conducted to assess the potential viral risk attached to
the new Java language. The potential threats have not really
been explored yet. This article presents the state-of-the-art
of Java viral capabilities and identifies some new techniques
specific to the Java features that could be efficiently used
by an attacker to spread malicious codes by means of Java
classes. While this paper primarily focuses on targeting Java
applications and not applets, the latter case will nonetheless
be addressed among the different ways an actual attack could
be launched by means of Java malicious codes. The protec-
tion and cure against such codes are also considered, dealing
with the analysis of these programs at the bytecode level.

Keywords

1 Introduction

The mechanisms of Java viruses are an almost unexplored
field. The fact is that Java is not supposed to be a virus-
friendly environment and class file infection is not straight-
forward but remains possible. Indeed, the risk is real and
cannot be ignored any longer. There are only two known
Java viruses, called StrangeBrew and BeanHive. They were
released in 1998 by an Australian student who wanted to
show that Java virus-making was possible, so that they were
created as a proof of concept; they were not meant to be dan-
gerous and therefore never spread: But in 1998, Java was a
very young language and since then a lot more developers
have joined the Java community. So, does it mean that in 7-

D. Reynaud-Plantey
Ecole Supérieure et d’Application des Transmissions,
Laboratoire de virologie et de cryptologie,
B.P. 18 35998 Rennes France
E-mail: daniel.reynaud-plantey@esat.terre.defense.gouv.fr

years nobody tried to create a usable Java virus? It is more
than likely that someone someday used a Java virus in a real
world attack, for fun or profit. Or if it did not happen yet, it
sure will in the short run.

First of all, the scope of this paper is to present the capa-
bilities of Java viruses, with no assumptions about the type
of Java classes (applications, applets, servlets. . .), but the
viruses detailed here target Java applications, NOT applets.
Java applets cannot be used directly as a virus launching plat-
form due to the security policy applied to them, but this case
will be treated in this document.

This article is organized as follows. Section 2 exposes
basic definitions and concepts about the Java programming
language. Section 3 presents the various practical aspects of
viral techniques that can be implemented specifically with
Java. New techniques identified by the author are then pre-
sented. They are very likely to greatly challenge all antivirus
software and must therefore seriously be taken into account.
Section 4 deals with the problem of detection and cure of
Java malicious codes, with a particular emphasis on low-
level analysis of the techniques described in Sect. 3. Finally,
Sect. 5, a few ways the actual attack could target your sys-
tem or network will considere. It could take the form of a
companion virus, a code dropper or a worm, to name a few.

2 Definitions and concepts

2.1 Introduction to Java

Java is a young object-oriented language designed by Sun
(http://java.sun.com) with portability and security
in mind. Java is portable because of its interpreted nature,
the compilation step being mainly a verification and optimi-
zation process. The produced binary file can then be checked
and run by the virtual machine. Therefore, Java programs
can virtually run on any system for which a virtual machine is
available (includingWin32, most Unix systems, PDA, mobile
phones, and even cars in the near future).

New Threats of Java Viruses 33

Basically, Java classes are defined in java files, which
once compiled become binary class files. These class files
are often distributed as jar (Java ARchive) files. End users
usually associate Java with applets, which are Java programs
widely used in html pages. Web browsers usually run applets
in a supposedly secure environment, commonly referred to
as “the sandbox”. The sandbox is a security model applied to
applets which prevents them from accessing the client hard
drive, network, or system. This security model has known his-
torical problems (Mark LaDue’s Hostile applets Home Page
is an interesting resource on hostile applets, though some-
what outdated) and must not be considered as the ultimate
solution to applet security management.

One of the interesting features of Java is that it can be
used not only to run applets but also applications (standard
Java programs, which have the same privileges as traditional,
native programs), servlets (server-side, CGI-like Java pro-
grams), MIDlets on cell phones and so on. Knowing this,
along with the fact that Java can run on almost any platform,
malicious programmers could make real cross-platform
viruses.

As we will see later on, there is no direct link between the
Java programming language and the binary representation of
class files: “The Java virtual machine knows nothing of the
Java programming language, only of a particular binary for-
mat, the class file format” (Tim Lindholm and Frank Yellin).
Though this point of view is not commonly shared, it is possi-
ble to consider Java as just a convenient front-end for devel-
opers and the compiler as a translator between Java and the
class file format. The real language is contained in binary
class files, and is more powerful than Java. Virus examples
in the following sections use some of the tricky aspects of
the class file format to demonstrate that malicious programs
could bypass the built-in security of the virtual machine.

An important aspect of Java security relies in the vir-
tual machine and the way it loads and verifies classes. In-
deed, binary Java classes must comply with many static (is
the class file ok?) and structural (are the instructions valid?)
constraints. They must also undergo a data-flow analysis
(is the interaction between instructions valid?) before they
can be executed. This verification process is a really strong
constraint for virus-makers and it certainly makes the virus-
making process a lot more complex, because errors when
tampering with class files irremediably lead to verification
failures, that is to say no execution of the broken class.

2.2 The class file format

Class files can be infected by other class files, similar to
what happens with PE or ELF infection. The class file for-
mat is defined and fully documented in Sun’s book, The Java
virtual machine specification by Tim Lindholm and Frank
Yellin . Here is an excerpt from the above specified format that
reviews the class file format (where ux represents x unsigned
bytes):

ClassFile {
u4 magic;
u2 minor version;
u2 major version;
u2 constant pool count;
cp info constant pool[constant pool count-1];
u2 access flags;
u2 this class;
u2 super class;
u2 interfaces count;
u2 interfaces[interfaces count];
u2 fields count;
field info fields[fields count];
u2 methods count;
method info methods[methods count];
u2 attributes count;
attribute info attributes[attributes count];
}
Here is what the different items mean:

– magic: four bytes having the hex value 0xCAFEBABE.
– minor version and major version give the version num-

ber of the class file format used in this file.
– constant pool count, interfaces count, fields count,

methods count and attributes count give the number
of elements in each table.

– access flags is a mask of flags giving the access prop-
erties of this class (public, private, abstract. . .)

– this class and super class are two indices in the con-
stant pool pointing to information regarding this class and
its super class.

The most important items are the five following tables:

– constant pool: this table lists all constants used in this
class (such as methods and class names, strings, initial
variable values. . .).

– interfaces: at list a the interfaces implemented by this
class.

– fields and methods: information regarding the fields
and methods defined in this class.The code of each method
and constructor is contained in the methods table.

– attributes: as expected, the attributes of this class file
(for example, the SourceFile or Deprecated attributes).

In our case, the virus will more specifically be interested
in the constant pool, fields and methods tables. The meth-
ods table is made of method info structures, as appearing
in Tim Lindholm and Frank Yellin :

method info {
u2 access flags;
u2 name index;
u2 descriptor index;
u2 attributes count;
attribute info attributes[attributes count];
}
The fields in a method info structure are self-explain-

ing enough, there is no need to comment on them. Most
of the useful information is contained in the attributes ta-
ble of the method, particularly the Code attribute:

34 D. Reynaud-Plantey

Code attribute {
u2 attribute name index;
u4 attribute length;
u2 max stack;
u2 max locals;
u4 code length;
u1 code[code length];
u2 exception table length;
{ u2 start pc;
u2 end pc;
u2 handler pc;
u2 catch type;
} exception table[exception table length];
u2 attributes count;
attribute info attributes[attributes count];
}
The Code attribute contains a code array that actually

lists the Java virtual machine instructions for this method.
This is the array the virus will have to locate and modify, for
each targeted method.

3 Practical aspects of Java viruses

This section presents some general-purpose class file infec-
tors written in Java. As they represent potential threats if
they fall into wrong hands, their source code has not been
made public. However, computer security professionals can
obtain them upon request to the author. The source codes
have been provided to the EICAR group (http://www.
ei\-car.org/) for release to the different antivirus soft-
ware publishers.This part is organized as follows : Section 3.1
presents a new virus which is built on the same concept as
StrangeBrew but tries to be more efficient and more power-
ful. Section 3.2 then presents a new virus concept that tries
to adapt the idea of code encryption to the Java viral world.
Finally, Sect. 3.3 discusses miscellaneous stealth techniques
that could be employed by Java viruses, including a quite
tricky one that allows the use of invalid identifiers in class
files.

3.1 A basic appending virus

The goal of our virus is to append its code to a target file,
where “code” means a set of constants, fields and methods.
Basically, our virus has to append its own constants, fields
and methods to the constant pool, fields and methods ta-
bles of the target, and then change constant pool count,
fields count and methods count accordingly. In order to
become executable, the virus then has to insert a call to viral
methods in the main method of the target class.

Let’s take a real example. To illustrate how to make a
general-purpose Java virus, we are going to introduce a new
virus called JavaVxConcept. It originally compiled to Jav-
aVxConcept.class, let’s assume it infected a file called Lo-
calClass.class. If LocalClass is run, JavaVxConcept goes
through the following steps:

1. Find a target. For security purposes, JavaVxConcept
looks for a file named LocalClass.class.cfg containing
the name of a valid target, for example Victim.class.

2. Retrieve information about the target. Such as its
method count and constant pool count.

3. Retrieve information about the local (viral) file. Find-
ing itself is not straightforward, but many solutions can be
implemented. StrangeBrew searches the working direc-
tory for an infected file to retrieve the viral information
from JavaVxConcept knows the name of the infected
class it is running from because of its local filename
field, set by its parent virus.

4. Mark the target as infected. JavaVxConcept does so by
adding 0 × 1000 to its access flags. 0 × 1000 is not a valid
access flag, but Tim Lindholm and Frank Yellin () speci-
fies that “All bits of the access flags item not assigned,
should be ignored by Java virtual machine implementa-
tions”.

5. Insert the viral methods in the target. This step occurs
in two phases:

(a) First, it increments the target’s methods count and
inserts the viral methods at the end of the methods
table of the target. To find the viral methods, JavaVx-
Concept looks for the n last entries of its own meth-
ods table, where n is the number of viral methods,
stored in the nb viral mt field. This field is set by the
original virus during the first infection.
Actually, the viral methods have to be modified be-
fore they can be appended to the target’s methods
table. The instructions in the viral methods contain
indexes that refer to the local constant pool, so that
these indexes have to be changed in order to be valid
in the target file. This step is quite complex, let’s see
why with a small example: suppose the viral method
viral() contains the instruction ldc 0 × 42. It tells the
virtual machine to load the constant at index 0×42 in
the constant pool, for example the string “All your
base”. The problem is: once inserted in Victim.class,
“All your base” will probably not appear at index
0 × 42. If it appears at index 0 × A2 everything is
perfect, the virus just has to replace ldc 0 × 42 with
ldc 0 × A2. But suppose the string appears at index
0 × 29A (or any number greater than 0 × FF). The
virus cannot just replace ldc 0 × 42 with ldc 0 × 29A
because ldc takes a single byte as an argument and
0 × 29A needs 2 bytes to be written. In this case we
have to replace ldc 0 × 42 with ldc w 0 × 02 0 × 9A
(ldc w takes a 2-bytes argument).
A new problem arises here. Suppose viral() contains
the following instructions:
ifeq 0x00 0x05
ldc 0x42
pop
This sequence means “if the top value on the oper-
and stack equals 0, pop it (the jump after the ifeq
instruction points five bytes after its address). Else,

New Threats of Java Viruses 35

load constant at index 0 × 42 and then pop the top
value on the operand stack”.
As we have seen above, we might have to replace ldc
0x42 with ldc w 0 × 02 0 × 9A. The sequence of
instructions becomes:
ifeq 0x00 0x05
ldc w 0x02 0x9A
pop
This sequence will result in an error because the jump
after the ifeq instruction points to the 0 × 9A byte,
which is not the valid address of an instruction. This
is normal because we expanded the data between the
jump instruction and its target. The virus thus has
to change the jump value accordingly. The correct
sequence should be:
ifeq 0x00 0x06
ldc w 0x02 0x9A
pop
This problem is quite complex, because the offset af-
ter an if condition, a tableswitch or a lookupswitch
is signed, and the arguments of tableswitch and look-
upswitch must be four byte-aligned.

(b) Then it modifies the main method of the target so
that it can execute the virus. This is done by inserting
three bytes in the code array of the Code attribute
attribute in the target’s main method. The three bytes
are invokestatic, indexbyte1 and indexbyte2. The
last two bytes are considered as an unsigned short
point to the infectTarget() method in the target’s con-
stant pool. The code length in the Code attribute
is then incremented.

6. Insert the viral fields in the fields table and increment
the target’s fields count item. JavaVxConcept retrieves
the viral fields the same way as it retrieved the viral meth-
ods: the field nb viral ft tells it to retrieve the last n entries
of its local fields table.

7. Append the viralconstant pool items to the end of the
target’s constant pool and increment its constant pool
count item. Once again, the viral constant pool items
are the last nb viral cp entries of the viral file.

Once all these steps have been successfully completed,
the resulting class file is a valid class containing the original
victim code plus the JavaVxConcept viral code. If you run
the infected application, JavaVxConcept will first proceed
from step 1 to 7. Once it is done, the original program runs
normally.

JavaVxConcept is a basic virus, rather slow and ineffi-
cient because an antivirus can easily detect and stop it. Once
a class file is infected, it is almost impossible to remove the
code attached to it, because JavaVxConcept inserts itself in
three different places and modifies a lot of data. As such,
JavaVxConcept is not very likely to be used in an attack, but
it is useful to explore the way class files can be infected and
it can be used as a basis for more efficient viruses. Indeed,
one of its main assets is that developers do not need to care
about the underlying viral mechanisms, JavaVxConcept is
entirely dynamic. For example, any method or field can be

added and the virus will function normally once recompiled,
which seems to be normal but not that obvious.As a reminder,
StrangeBrew allowed only one viral method, no field, and if
the method were changed, some hardcoded fields (such as
the length of the viral data) have to be changed manually.
Therefore, this virus is a convenient platform for the study
of more complex viral algorithms.

3.2 Code encryption

We have seen that the previous virus has many limitations
for which we could try to find a workaround. The main prob-
lem is that it copies a lot of data into its target, and these
data are almost always the same from one copy to the others
(only indexes change). Moreover, the virus parses its own
code before inserting it and therefore if an error occurs in a
given virus, it will also appear in all its children. The prob-
ability that an error will occur increases in important as the
virus spreads, so it will probably stop working after a certain
number of infections, depending on the quality of the virus.
Add this to the fact that the Java bytecode verifier accepts no
error, even the subtler ones, and that the virus can potentially
encounter different virtual machines with different checking
procedures, and you will understand that making an abso-
lutely error-free Java virus is a tough task.

We now consider a more sophisticated proof-of-concept
virus, denoted JavaVxCryptoConcept. A possible solution to
the above-mentioned problems and limitations is to include
the virus as a whole in the target. Once infected, the target
loads a new class with the viral data it contains, which is
identical to the original virus. The infection process can then
repeat itself, with a smaller likelihood to fail.

However, problems remain with this approach. First of
all, where should the virus be included in the target? We
need to insert a lot of data that should not get checked by
the bytecode verifier but can still be easily accessible by the
target, once infected. The simplest way to do this is to store
the whole virus as a Constant Utf8 (string) structure in the
target’s constant pool. In order to be harder to analyze and
to detect, the virus could store its own code as an encrypted
string with a different key each time. I refer to this technique
as code encryption, to highlight the parallel between it and
the existing packing techniques for executable files.

A last point needs to be mentioned: the virus has to load a
new class, based upon the encrypted data it contains. In order
to define this class on the fly, two options are possible. The
simplest is to write the decrypted data to a class file and then
instantiate the virus normally:

RandomAccessFile out = new
RandomAccessFile
("JavaVxCryptoConcept.class", "rw");
out.write
(decrypted, 0, decrypted.length);
out.close();
JavaVxCryptoConcept
v = new JavaVxCryptoConcept();

36 D. Reynaud-Plantey

This approach might not work in some cases, depending on
the classpath configuration and on the virtual machine: if
the virtual machine does not look for classes in the working
directory or if the working directory is not in the classpath,
then the newly created class JavaVxCryptoConcept will not
be found. The solution could be to look for a directory in the
classpath where JavaVxCryptoConcept.class can be written.
Yet, writing the data to a file is not a really good idea because
the decrypted data can then be easily analyzed by an antivirus,
and the advantage of encrypting the data beforehand is then
lost. Using the file system adds an unnecessary step: accord-
ing to the Java 1.5 API Specification, “[. . .] some classes
may not originate from a file; they may originate from other
sources such as the network, or they could be constructed
by an application. The method ClassLoader.defineClass
converts an array of bytes into an instance of class Class
[. . .]”. The following piece of code does the same as above,
but without using the file system:

Class decoded = defineClass(“JavaVxCryptoCon-
cept", decrypted, 0, decrypted.length);

Constructor con = decoded.getConstructor();
Object obj = con.newInstance();
Unfortunately, ClassLoader.defineClass is protected,

so we need to subclass ClassLoader in order to be able to
use it. To sum it up, the new virus goes like this:

1. if class JavaVxCryptoConcept is run directly, read the
local data (the whole JavaVxCryptoConcept.class file)
and create a new JavaVxCryptoConcept instance, pass-
ing the data as an argument. Else, if class JavaVxCrypto-
Concept is instantiated, look for a target in a file called
target.cfg;

2. retrieve information about the target. If the target’s
superclass is not Object, stop infection here;

3. add the constants necessary for the execution of the de-
code() method to the target’s constant pool;

4. encrypt the viral data, convert the encrypted data to ascii
and append it to the target’s constant pool as a Con-
stant Utf8 entry. In order to obtain a different encrypted
string each time, the algorithm and the key can change.
JavaVxCryptoConcept uses the target file name as a
key and the following method to encrypt itself:

// import javax.crypto.*;
// import javax.crypto.spec.*;

byte[] code(String key)
throws Exception {
// add new algorithms here
String alg[] = {"DES", "DESede"};

int num = key.length(){\%}2;

KeySpec s = (num==0 ? new DESKeySpec
(key.getBytes()):
new DESedeKeySpec
(key.getBytes()));

SecretKey k = SecretKeyFactory.

getInstance(alg[num]).
generateSecret(s);}

Cipher c = Cipher.getInstance
(alg[num]);
c.init(Cipher.ENCRYPT_MODE, k);
return c.doFinal(data);
}

5. change the value of target’s super class so that it
points to ClassLoader. This step has to be completed
if we want the target to be able to define the JavaVxCryp-
toConcept class on the fly. It is also used as a marker
for the infection: once ClassLoader is set as the target’s
superclass, it will never be infected again (see step 2);

6. insert the decode() method in the target’s method ta-
ble;

7. insert a call to decode() in the target’s main method.
The decode() method basically does the following:
(a) read the local constant pool and look for the last

Constant Utf8 entry;
(b) decrypt this Constant Utf8 entry;
(c) load the new class defined by the decrypted data, as

seen above and instantiate it. Infection then proceeds
again at step 1.

JavaVxCryptoConcept is the combination of two tech-
niques: minimal code appending, as seen in the previous
example, and code encryption. Most constant parts and er-
rors are likely to come from the code appending part. Code
encryption makes the virus harder to detect and analyze. The
decryption method can be easily reverse engineered, but code
encryption coupled with some anti-reverse techniques could
disturb the virus analysis. The study of these techniques is
beyond the scope of this article because they are not specific
to Java viruses, but some stealth techniques are presented in
the following section.

3.3 Stealth techniques

Hiding information in class files We have seen with the previ-
ous section that code could be packed and inserted in the con-
stant pool as a Constant Utf8. There are many other places
in a class file where information can be stored without being
checked. This can be achieved with an attribute structure,
which has the following format:

attribute info {
u2 attribute name index;
u4 attribute length;
u1 info[attribute length];
}
As you can see, an attribute is made to store variable-

length data. Moreover, attributes can be found at many loca-
tions: in the ClassFile structure itself (remember the table
attributes), in a field info, a method info or a Code attri-
bute structure. And the most interesting feature of attributes:
“A Java virtual machine implementation is required to silently
ignore any or all attributes in the attributes table of a Class-
File structure that it does not recognize” (Tim Lindholm and

New Threats of Java Viruses 37

FrankYellin). Sun has made this choice with extensibility in
mind, to ensure backward compatibility with older VMs in
case new attributes are defined. To sum it up, attributes are
interesting for storing information such as packed code for
the following reasons:

– They allow the storage of arbitrary, variable-length data.
– The data will not get checked.
– The virtual machine is required to silently ignore un-

known attributes.
– The stored information will not appear in decompiled or

disassembled class files.

The turnover is that access to that information needs more
work than accessing information stored in the constant pool.
For example, imagine the following constants are appended
to the constant pool of the target:
cp[x] -> CONSTANT String: string index = x+1
cp[x+1] -> CONSTANT Utf8: value = “. . . packed
code. . . ”

A method can then easily access it with the instruction ldc
x, which will push the value “. . . packed code. . . ” on the
operand stack. On the other hand, to retrieve the information
stored in an attribute, the program must do the following:
open the local class file (as seen above, this can be an issue)
and parse the whole class file until the attribute is found.

There is another interesting way to hide information in
a class file, using a trickier approach. The idea is to store
the data directly in the code array of the Code attribute
of a given method, after the last return or ret instruction.
This is tricky because the code arrays are highly sensitive
parts of the class file and extensive checks are being per-
formed on it. Storing information (not necessarily instruc-
tions) there remains however possible because of the dead
nature of the inserted information. They are not going to
be executed, so they just have to comply with some struc-
tural constraints (for example they must be valid instructions
with valid arguments) and they will never undergo the data-
flow analysis, which could determine that these instructions
are illegal though well-formed. The interest of storing infor-
mation there is limited but can be used to confuse reverse
engineers.

Consider the following simple class:

class VeryDummy {
public static void main(String[] arg) {
System.out.println
("doing absolutely nothing...");
}
}

The command javap -c VeryDummy gives the follow-
ing output for method main:

public static void main
(java.lang.String[]);
Code:

0: getstatic #2;

//Field java/lang/System.out:
Ljava/io/PrintStream;

3: ldc #3;
//String doing absolutely nothing...

5: invokevirtual #4;
//Method java/io/PrintStream.println:
(Ljava/lang/String;)V
8: return

Now suppose we add the information 61 6C 6C 79 6F
75 72 62 61 73 65 (the hex values for “allyourbase”) af-
ter the return instruction in VeryDummy.class and change
code length and attribute length accordingly. The class
can still be executed with no apparent change, which means
that the code array has been checked and declared valid. Let
us disassemble VeryDummy again, javap -c VeryDummy
now gives the following output:

public static void main
(java.lang.String[]);
Code:

0: getstatic #2;
//Field java/lang/System.out:
Ljava/io/PrintStream;
3: ldc #3;
//String doing absolutely nothing...

5: invokevirtual #4;
//Method java/io/PrintStream.println:
(Ljava/lang/String;)V

8: return
9: ladd
10: idiv
11: idiv
12: lshl
13: ddiv
14: lneg
15: frem
16: fadd
17: ladd
18: drem
19: lsub

The information we added appear as valid instructions
which mean nothing. The interest is that the modification is
invisible in decompilers, which perform data-flow analysis.
The output of jad -nonlb -noctor -p VeryDummy.class is
still:

import java.io.PrintStream;
class Test {
public static void main(String args[]) {
System.out.println("doing absolutely nothing...");
}
}

38 D. Reynaud-Plantey

However, jad provides the -dead option to decompile
dead parts of code. In our case, jad -deadVeryDummy.class
causes jad to crash. This is not surprising as the instructions
jad tries to decompile are illegal ones. In conclusion, adding
information to code arrays is not necessarily efficient and can
be error-prone if not used correctly but can also be confusing
for reverse engineers.

Method name stealing As stated in the introduction of this
document, there is no direct link between the Java program-
ming language and the class file format. This fact becomes
obvious when you work with bytecodes. Some aspects of the
difference between Java and the bytecode can be useful to
virus makers, an example of such difference is going to be
detailed in this section.

Invoking a given method SomeClass.someMethod()
from Java requires the knowledge of three characteristics:

– the class defining the method, SomeClass.
– the name of the method, someMethod.
– the arguments and return type of the method, called the

descriptor of the method.

The bytecode knows (almost) nothing of these charac-
teristics. From the bytecode point of view, the invocation of
a given method requires a call to the invokevirtual, invok-
especial or invokestatic instructions immediately followed
by the index of the method in the constant pool. The role
of the bytecode verifier is to check that the method has a
valid name, is accessible, is called with the appropriate argu-
ments, etc... But the fact is that from the bytecode point of
view, a method is an index in a constant pool. So you can
wonder whether it is really useful for a virus which operates
directly at the bytecode level to add a whole method in the
target. By whole method I mean the method info structure
containing the code of the method, but also the constant pool
entries associated with it, including its name, descriptor and
necessary runtime constants (such as pointers to other meth-
ods). Actually, adding the name of the method along with the
method itself is of no use, since the viral methods are not
supposed to be reused or accessed from outside the infected
class. Including the real name of a method (such as “decode”
in JavaVxCryptoConcept) will only give away unnecessary
information to reverse engineers.

To prevent this information leak, a virus could use method
name stealing. This technique consists in reusing the name
of a method already defined in the target. This is valid as
long as the descriptors of the original method and the viral
one are different. For example, consider an improvement of
JavaVxCryptoConcept:

– The decode(void) method could now be defined as de-
code(java.lang.Void).
This is done to ensure that decode and the target method
will have different descriptors, because java.lang.Void
is never used in real java programs. If it is used in the
target, the virus maker should consider that he definitely
has a bad karma. A call to decode should now look like
decode((Void)null).

– When parsing the target file and more particularly its con-
stant pool, the virus should keep in memory the index of
the name of a method declared in it. In case no other
method is declared, main can always be used.

– When adding the viral constant pool entries (necessary
for the execution of the viral method), the symbolic ref-
erence to the viral method must be updated. This symbolic
reference is a CONSTANT Methodref info:
CONSTANT Methodref info {
u1 tag;
u2 class index;
u2 name and type index;
}
name and type index is also the index of a structure is
the constant pool:
CONSTANT NameAndType info {
u1 tag;
u2 name index;
u2 descriptor index;
}
name index is the index of a Constant Utf8 structure
giving the name of the method. By changing name index
to another value so that it points to another Constant Utf8
string, the method will almost be allowed to be called
with its new name. Almost, because the name index in
the method info structure of the viral method must also
point to the new name.

An example will show the expected result. Let A and B
be two victim classes:

class A extends java.lang.Object{
A();
public static void main(java.lang.String[]);
}
class B extends java.lang.Object{
B();
public static void main(java.lang.String[]);
private void doSomething();
}
Now suppose a version of JavaVxCryptoConcept imple-

menting the method name stealing technique is run and tar-
gets these two classes. The output of javap -private A B
could be:

class A extends java.lang.Object{
A();
public static void main(java.lang.String[]);
private void main(java.lang.Void); // former decode()

method
}
class B extends java.lang.Object{
B();
public static void main(java.lang.String[]);
private void doSomething();
private void doSomething(java.lang.Void); // former

decode() method
}
This simple technique prevents adding unnecessary infor-

mation into the victim’s constant pool, and can be confusing

New Threats of Java Viruses 39

if it has not been clearly identified for the virus analysis.
However, if the goal of the virus maker is to make the reverse
engineering of his malicious program harder, he could use
more powerful anti-reverse engineering techniques, which
are beyond the scope of this article. Such techniques have
been presented at theVirus Bulletin 2005 Conference in Dub-
lin (Daniel Reynaud-Plantey (2005)) and will be the subject
of a future research work.

Invalid identifier injection This technique is derived from the
method name stealing technique. It is based on the fact that
some virtual machines do not check if the names of classes,
fields and methods are valid Java identifiers (including Sun’s
Java(TM) 2 Runtime Environment, Standard Edition (build
1.5.0 01-b08 and 1.4.1 02-b06) and Kaffe). The check is only
made at compile-time, contrary to what is stated in Tim Lind-
holm and FrankYellin : “The checks performed [. . .] include
[. . .] checking that all field references and method references
in the constant pool have valid names”. This has already been
pointed out in Godfrey Nolan and Crema, one of the first
commercial obfuscators, uses it to perform name mangling.
However, this technique seems to have been overlooked since
it violates the specification and it still has not been fixed.

Let’s consider a simple example illustrating what can be
done with this technique: we are going to forge a class with
an empty name.

We are first going to create the class with a standard name
(Test):

class Test {
String s = "";
public static void main(String arg[]) {
System.out.println("how are you gentlemen?");
}
}
The empty string is here to ensure that the constant pool

will contain an empty Constant Utf8. Using a disassembler
like ByteCodeTester, we obtain the following output:

magic number = CA FE BA BE
bytecode version = 49.0
constant pool count = 35

cp[1] (offset 0xa) ->CONSTANT_Methodref:
class_index = 8;
name_and_type_index = 19

(...)

cp[9] (offset 0x1f)->CONSTANT_Methodref:
class_index = 25;
name_and_type_index = 26

cp[10] (offset 0x24) -> CONSTANT_Class:
name_index = 27
cp[11] (offset 0x27) -> CONSTANT_Class:
name_index = 28

(...)

cp[19] (offset 0xa4) ->
CONSTANT_NameAndType:
name_index = 11;

descriptor_index = 12

cp[20] (offset 0xa9) -> CONSTANT_Utf8:
value = ""

cp[21] (offset 0xac) ->
CONSTANT_NameAndType:
name_index = 9;

descriptor_index = 10

(...)

cp[26] (offset 0xd6) ->
CONSTANT_NameAndType:
name_index = 33;

descriptor_index = 34
cp[27] (offset 0xdb) -> CONSTANT_Utf8:

value = "Test"
cp[28] (offset 0xe2) ->

CONSTANT_Utf8: value =
"java/lang/Object"

(...)

access flags = 0x20 [ACC_SUPER]

this_class index = 7
super_class index = 8

(...)

We can see that this class index is 7. The constant pool
entry number 7 is a Constant Class structure which con-
tains the value name index = 27 (“Test” in this case). Just
replace this name index with 20 and the Test class will have
an empty name. In order to be able to execute it, “Test.class”
has to be renamed “.class”. We can now execute it with the
command java "". javap "" gives the following output:

Compiled from "Test.java"
class extends java.lang.Object{
// empty name for the class !
java.lang.String s;
(); // constructor of the class

public static void main
(java.lang.String[]);
}

Before the modification, javap Test gave:

Compiled from "Test.java"

class Test extends java.lang.Object{
java.lang.String s;

40 D. Reynaud-Plantey

Test();
public static void main
(java.lang.String[]);
}

A malicious program could use this technique in order
to hide classes on UNIX systems. It gives the attacker the
opportunity to use tricky names for his classes, allowing him
to hide them more easily and maybe to exploit bugs in class
loaders. In addition to this, he could use invalid identifiers
for his viral attributes and methods, making decompilation
useless for the analysis of his malicious program without
modifications.

4 Detection and cure of Java viruses

4.1 Detection with signatures

The generation of a signature for a Java virus should be as hard
(or easy) as the generation of a signature for a native virus. A
basic virus like JavaVxConcept presented in Sect. 3.1, con-
tains large parts of constant data which can be easily used
as a signature. However, JavaVxCryptoConcept significantly
reduces the amount of constant parts and should therefore be
harder to identify with a signature. The static analysis has to
detect the virus based on the analysis of the following data:

1. The entries that have been added to the constant pool
(mainly for the execution of decode()). In this case,
they are about 160 but do not characterize the virus.
Moreover, it is possible to optimize JavaVxCryptoCon-
cept so that there are less entries. This can be achieved
by removing unnecessary operations from decode(), by
inlining methods and by avoiding adding redundant en-
tries (for example, it is possible to avoid adding a CON-
STANT Utf8 entry pointing to java/lang/Object because
the target is most likely to contain it). It is also possible to
randomize the order in which these constants are added.

2. The encrypted viral data, it is stored as a fixed-length
variable hex string, but once again it is possible to add
some entropy by using variable compression before the
encryption of the data and by using different encodings
(hex, base64 or other MIME encodings) for the encrypted
data.

3. The decode() method itself, it is a 552 bytes long array in
which indexes change according to the target but which
mostly remains constant. It is however possible to use
a simple obfuscation algorithm to modify the bytecodes
before inserting decode() in the target.

On the whole, JavaVxCryptoConcept shows that it is pos-
sible to create a Java virus with fewer constant parts and could
become smaller and almost totally self-modifying with a few
optimizations. More in-depth experiments should be run but
it is likely that generating a signature for middle-level viruses
such as JavaVxCryptoConcept will be tricky.

4.2 Detection with code emulation/dynamic analysis

This aspect is currently under study. It is not clear whether
present behavior analysis techniques, code emulation
techniques and more generally dynamic analysis would be
efficient at detecting such Java malicious codes as we have
presented above. Experiments performed at the Virology and
Cryptology Laboratory proved that none of the available an-
tivirus software — irrespective of their set-up, — was able
to detect them.

4.3 Analysis of the malicious code

This problem is not as easy as it may seem at first sight. A
thorough study of analysis techniques is beyond the scope
of this article but a detailed insight can be found in Daniel
Reynaud-Plantey (2005). Here is a brief review of the prob-
lems the analyst might encounter :

1. The malicious code can be included in a “protected”
jar file. Actually, the file containing the malware does
not even necessarily have the .jar extension. Consider the
following example:
>java Test
I’m just a poor test...
>echo Main-Class: Test> manifest.mf
>jar cmf manifest.mf test.jar Test.class
>java -jar test.jar
I’m just a poor test...
>mv test.jar test.jpg
>java -jar test.jpg
I’m just a poor test...
This simple example shows that Java classes can be exe-
cuted from any jar file, no matter what their name is. It
is also possible to forge a jar file from which the classes
cannot be extracted directly, thanks to the invalid identi-
fier flaw explained in Sect. 3.3. This level of protection is
meant to waste the time of the analyst before he can even
start reverse engineering the malware.

2. Once the classes are extracted, the analyst will proba-
bly try to decompile them. The advantage of Java for
reverse engineers is that by default it is easy to recover
the source code of a class given only its compiled form.
However, it is pretty easy to prevent decompilation. There
are many levels of protection, from layout(modification
of identifiers, possibly invalid) to control flow transfor-
mations and standard obfuscation. These transformations
are detailed in Christian Collberg’s paper entitled Taxon-
omy of Obfuscating Transformations (Godfrey Nolan).
Specific programs have even been created to defeat de-
compilers, such as HoseMocha, which can be found on
Mark LaDue’s Hostile Applets Home Page.

3. Using a debugger on obfuscated class files is also quite
hard. It is possible to make the use of a debugger even
harder, for example by using multithreading. However,
some debuggers can be particularly adapted to viral files,
such as omniscient debuggers.

New Threats of Java Viruses 41

4. The last solution is the low-level analysis of the malware
through disassembling. Layout transformations do not
have a huge impact on the disassembling process, but
control flow transformations do and a good obfuscator
can produce really tricky bytecodes. This is, however,
the only solution left to the analyst in case the virus uses
armouring techniques.

5. In the case of an encrypted virus like JavaVxCryptoCon-
cept, the analyst will first have to reverse engineer the
decode() method in order to see how the decryption oc-
curs before being able to proceed to the analysis of the
virus itself. JavaVxCryptoConcept only uses encryption
to prevent automatic detection and therefore will not re-
sist a good analysis, because the encryption key is con-
tained in the file (it actually is the file name). But Eric
Filiol (2005) shows that by using environmental key gen-
eration, the analysis of the virus is at least as hard as the
cryptanalysis of the underlying encryption scheme.

5 Real world attacks

Some techniques discussed below are examples of the way
a Java viral attack could infect you and settle on your sys-
tem. In the last parts, the described techniques could be used
by Java viruses to push the attack further, and actually use a
Java virus as a platform for a broader attack. To launch a real
attack, the malicious programmer has two advantages. Java
is everywhere and it is possible to find systems equipped with
a virtual machine that the user or the administrator did not
notice.Also, most people regard Java as a secure platform and
have a tendancy to trust Java code. Such trust relationships
are dangerous and may lead to attacks that should otherwise
be easily avoided.

5.1 Exploits and worms

For the moment, most people think of Java security in terms
of applets and mobile code execution. It is true that for the
average user, Java is only used for small applications such
as applets or MIDlets which can only run in a “controlled”
environment. The danger is to think that Java cannot harm
your system because of this sandbox model. When Strange-
Brew was released it was common to hear things such as
“don’t worry, applets run in a sandbox and therefore can’t do
anything dangerous”. Many people are still probably think-
ing like this. This kind of assertion is FALSE. Hackers have
proved capable of finding flaws in virtual machines and secu-
rity model implementation, and most importantly they showed
they could exploit them as we shall see later on. The fact is
that those high risk vulnerabilities have not been exploited
very smartly and most of them got fixed pretty quickly. How-
ever, it is possible that some people, did detect flaws but chose
not to disclose them, exploiting them for their own use.

So How then to explain that even with very important
stakes and millions of vulnerable systems there have been no

large scale attacks? A possible explanation is that the hacker
community is not used to Java (note that this is the same
for the security professionals community) and most potential
Java hackers probably prefer exploiting some buffer overflow
than trying to bypass the strong constraints of the Java secu-
rity model because of the expected amount of work.

A very interesting trojan known as Java.Classloader (alias
Java.Byteverify or Trojan.ByteVerify) exploits a flaw in all
Microsoft’s VM versions earlier than 5.00.3810 (Microsoft
Security Bulletin MS03-011). The problem resulted from
the way the bytecode verifier checked the code array when a
class was loaded. This vulnerability enabled the attacker to
run a “fully trusted” applet, with the same permissions as the
user who accessed the page containing the applet. A version
of this exploit seems to have been used by Russian hackers
to target Australian bank site users. The applet was loaded
with the following tag:

<applet archive="classload.jar"
code="GetAccess.class"
width="1" height="1" param
name="ModulePath"
value="http://aicworld.info/msxmidi.dat">

Once loaded, the applet downloads the msxmidi.dat file, re-
names it to msxmidi.exe and executes it. More details about
this trojan can be found in http://jola.clover.com.au/
pipermail/polonet-l/2004-April/000049.html and http://
www.auscert.org.au/3981.

Another vulnerability called BOHTTPD (CERT) targeted
Netscape Communicator. It is now outdated but illustrates
the way an applet can jump out of the sandbox on a specific
platform. Under normal conditions, an applet can only initi-
ate connections to the server it was loaded from and cannot
listen on a port. BOHTTPD enabled the attacker to violate
these rules. It could have many uses:

1. map a network or portscan machines behind a firewall in
a corporate network,

2. launch a DDOS,
3. bounce connections to relay network attacks.

These exploits, coupled with the viral techniques dem-
onstrated above, could wreak havoc if a viral applet was im-
planted on newly defaced websites. But despite this danger,
they cannot be used directly to make Java worms. Let’s exam-
ine some ways a Java worm could spread:

1. Web applets are not good worm vectors because of their
client oriented nature. Its means that the attacker is pas-
sive and can only wait for a victim to visit the site con-
taining the malicious applet. And even in that case, the
infection process is not the one of a classic worm, because
the infection will not spread from one infected machine
to another.

2. E-mail applets look more interesting in order to make a
worm. However, most e-mail clients will not allow Java
applets to run in html mail by default, so the malicious
Java applet could only run if another flaw were exploited.

42 D. Reynaud-Plantey

3. Servlets can probably be exploited. But the flaw will most
probably not be specific to Java, it is more likely that the
flaw will come from the servlet running engine (such as
Tomcat for Apache (The Apache Jakarta Project)). It is
however theoretically possible to find flaws similar to the
ones encountered with PHP or CGI scripts. Once again,
the small number of exploits targeting servlets is proba-
bly linked with the fact that few people take the time to
find them.

4. MIDlets are roughly the equivalent of applets for cell
phones. Though the idea of a Java worm for cell phones is
appealing, it seems that such a malicious program would
encounter the same difficulties as web applets. However,
more research needs to be conducted by the security com-
munity before any assertions about the strength of cell
phone security can be made. Adam Gowdiak has already
demonstrated that powerful attacks could be implemented
against Nokia phones. (Java 2 Micro Edition (J2ME) se-
curity Vulnerabilities)

In conclusion, Java is at the same time interesting for
exploit-writers (because of its wide multi-platform use) and
time-consuming because of the built-in security of virtual
machines. Even if this security model is not perfect, it shows
that Java has been created with security in mind and this
is probably one of the reason why there have been no Java
worms for the moment.

5.2 Companion code

Java can be used to create malicious programs mimicking
native companion viruses.Creating a simple Java companion
virus targeting standalone applications (that is to say class
files containing a main method) is trivial. A more interesting
and stealthier approach could target jar files. Consider the
following algorithm:

1. Search for a jar file in the current directory.
2. When a jar file is found, look for the main class in it. The

main class of a jar file can be specified in the Main-Class
section of the manifest.mf file in the jar file. If this section
does not exist, the main class can be found by looking for
class files with a main method in the jar file. Note that
not all jar files contain main classes.

3. If a main class has been found, copy the virus (the current
class) in the jar file with the same name as the target class.
The jar file being basically a zip file, it is possible to have
duplicate entries in it. The main class of the target jar file
is now the virus.

4. Finally, attempt to load the original class that the virus
has hijacked, that is to say the second class named like
the current class in the current jar file, so that the user
sees no difference with a normal execution.

These are the basic steps that a companion virus could imple-
ment in order to infect jar files.

Another approach can take advantage of the object-ori-
ented nature of Java. Classic companion viruses use the tricky

aspects of execution priority, playing with file extensions and
the PATH environment variable. Java classes necessarily have
the .class extension so this approach is not possible, the inter-
esting aspect is class loading priority. Virtual machines gen-
erally use the CLASSPATH environment variable, which is
the same as PATH but for Java classes.

In the last example, the virus was used to run malicious
applications before the legitimate ones, do the viral work
and then execute the legitimate applications (here, classes
are considered as executables). With the new concept; the
malicious code would not run before the real one, it would
replace some classes with malicious ones (thinking of clas-
ses in terms of objects). This approach is considerably pow-
erful because almost everything is accessible from Java as
a Java class. For example, even a string is an object from
the Java point of view (cf java.lang.String). These classes, in
the Java API are called the bootstrap classes. It can be partic-
ularly powerful to load malicious classes instead of the real
bootstrap classes.

Most virtual machines allow for the redefining of the
bootstrap classpath. For example, consider the following batch
script for Windows:

: java.bat
@echo off
java.exe -Xbootclasspath/p c:\malicious.jar %*
If this script is saved in the PATH before the java.exe exe-

cutable, it will silently tell the virtual machine to first look for
bootstrap classes in c:\malicious.jar (this can be done with a
simple alias under UNIX systems). Here are some examples
of interesting classes to override:

1. java.lang.ClassLoader: could give more control over
the class loading process

2. java.net.Socket: could allow for man in the middle at-
tacks. For example, the fake Socket class could be told to
connect to a proxy instead of the requested IP.

3. java.util.Random and java.security.SecureRandom:
could be used to generate cryptographically weak random
number sequences.

4. javax.crypto.KeyGenerator and SecretKeyFactory:
could be used to log the generated keys

The only limit to this technique is the imagination of the
attacker. It is particularly powerful because there is no need
to tamper with class files and the modification is invisible to
the targeted application.

5.3 Code dropping

That the sandbox model should not be trusted has been
demonstrated. However, even when the security model is by-
passed, the Java code can hardly make low level attacks be-
cause it has only a restricted access to the system. The idea is
that Java can be used as a vector for more powerful attacks,
where the process is the following. First, run Java untrusted
mobile code (such as an applet, a servlet or a midlet). Then,
jump out of the sandbox by exploiting a flaw and finally drop
native code.

New Threats of Java Viruses 43

These steps looks like the way the Java.ClassLoader tro-
jan acts, but it is not exactly code dropping. The idea of
code dropping is to store the native code directly in the class
file, for example as an encrypted string constant (just like
JavaVxCryptoConcept does, in Sect. 3.2). The class file can
even contain different encrypted files, one for each operat-
ing system. One could even imagine that what is dropped is
source code, which will then be compiled locally. This idea
is similar to the one presented in Michael Zalewski .

What makes this technique powerful is that it can be used
to create a really cross-platform infection. It also can be used
to encapsulate the native code so that it passes through the
antivirus software on a firewall or a mail server without being
detected. The antivirus can only check on the client machine
if the java class file has not been stopped at the gateway level.
It can also attack at different levels, for example it can infect
both class files and executable files on different systems and
install a malicious native code that will cooperate with the
Java malware.

Future Java attacks will probably use this technique. It was
almost the case with the Java.ClassLoader trojan but from the
Java point-of-view the attack was not very well designed and
it was trivial to analyze and understand what was going on.
Such an attack made by a team of good Java hackers and
system programmers could be really hard to detect, analyze
and cure.

6 Conclusion

In order to illustrate what was possible with Java viruses, two
of them were created by the author. The main theme of the
article is that these viruses asre interesting but could become a
lot more dangerous, stealthier and harder to detect and eradi-
cate if some of the presented techniques were combined. Java
is slowly but steadily maturing and is now widely used on a
variety of platforms but it seems that the viral risk has not
been specifically addressed. With the advent of MIDlets and
the development of Java applications, applets are no longer
the only target for exploit and virus writers.

Without being catastrophist, people (i.e., the AV indus-
try, software companies and users) must understand that Java
viruses are real and should therefore be seriously studied so
that users are really as safe as they currently think they are.

Acknowledgements Many thanks to Major Eric Filiol, Head Scientist
Officer of the Virology and Cryptology Laboratory of the French Army
Signals Academy for supervising my research and actively helping me

in the redaction of this paper, but above all for his support and encour-
agements.

References

Mark LaDue’s Hostile Applets Home Page, http://www.
cigital.com/hostile-applets/

Lindholm T, Yellin F, The Java virtual machine specification
2nd edn. http://java.sun.com/docs/books/
1/index.html

Reynaud-Plantey D (2005) Reverse engineering and Java
viral analysis – virus bulletin conference, Dublin,
http://www.virusbtn.com/conference/
vb2005/index.xml

Nolan G, Decompiling Java, APress, USA, ISBN 1-59-
059265-4.

Collberg C, A taxonomy of obfuscating transformations.
http://www.cs.arizona.edu/∼collberg/
Research/Publications/CollbergThombor-
sonLow97a/

Filiol E (2005) Strong cryptography armoured com-
puter viruses forbidding code analysis: the bradley
virus. In: EICAR 2005 Conference Proceedings,
Malta, http://papers.weburb.dk/archive/
00000136/, pp 216–227

Microsoft Security Bulletin MS03-011, http://
www.microsoft.com/technet/security/
bulletin/MS03-011.mspx

http://jola.clover.com.au/pipermail/
polonet-l/2004-April/000049.html

AUSCERT ALERT – Bogus banking email allows trojan
infection for outlook users, http://www.auscert.
org.au/3981

CERT Advisory CA-2000-15 netscape allows Java applets
to read protected resources, http://www.cert.org/
advisories/CA-2000-15.html

The Apache Jakarta Project, http://jakarta.
apache.org/tomcat/

Java 2 Micro Edition (J2ME) Security Vulnerabilities,
http://confer\-ence.hackinthebox.org/
hitbsecconf2004/speakers.php#adam

Michael Zalewski, Writing internet worms for fun and profit,
http://reactor-core.org/worms-for-fun-
and-profit.html

